SVRK GOVERNMENT DEGREE COLLEGE: NIDADAVOLE TABLE – A – CURRICULAR PLAN – LECTURERE WISE: 2024-25

NAME OF THE LECTURER: S. NAGESWARA RAO <u>DEPARTMENT</u>: Physics <u>CLASS</u>: II B.Sc. Honors (Comp.Sci)

YEAR: II SEMESTER: III COURSE: Physics Minor – Course II - (Optics)

BER	MONTH & WEEK	HOURS AVAILABLE	SYLLABUS TOPIC	ADDITIONAL INPUT /VALUE ADDITION	CURRICULAR ACTIVITY				CO-CURRICULAR ACTIVITIY				REM ARKS
SERIAL NUMBER					ACTIVITY	HOURS	WHETHER CONDUCTED	IF NOT, ALTERNATIV E DATE	ACTIVITY	HOURS	WHETHER CONDUCTED	IF NOT, ALTERNATIV E DATE	
1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	July 1 st week	3 2	UNIT-I Aberrations: Monochromatic aberrations, Spherical aberration, Methods of minimizing spherical aberration,	Deviation produced by	Lecture + Experimental teaching	3 2							
2	July 2 nd week	3 2	Coma, Astigmatism and Curvature of field, Distortion;	a thin lens and Dispersion	Interactive + Experimental teaching	2 2			Assignment	1			
3	July 3 rd week	3 2	Chromatic aberration-the achromatic doublet; Achromatism for two lenses (i) in contact and (ii) separated by a distance	through a Prism.	Lecture + Experimental teaching	3 2							

4	July 4 th week	3 2	Unit – II- Interference: Principle of superposition – coherence Conditions for interference of light. Fresnel's biprism determination of wavelength of light –change of phase on reflection		Lecture + Experimental teaching	2 2		Quiz	1		
5	August 1 st week	3 2	Oblique incidence of a plane wave on a thin film due to reflected light (cosine law) –colors of thin films- Interference by a film with two non-parallel reflecting surfaces (Wedge shaped film). Determination of diameter of wire,	Young's double slit Experiment and Llyod's mirror	Lecture + Experimental teaching	3 2					
6	August 2 nd week	3 2	Newton's rings in reflected light. Determination of wavelength of monochromatic light using Newton's rings and Michelson Interferometer.	Fraunhofer diffraction at double slit and circular aperture	Lecture + Experimental teaching	3 2					
7	August 3 rd week	3 2	UNIT-III Diffraction: Introduction, distinction between Fresnel and Fraunhoffer diffraction,		Lecture + Experimental teaching	2 2		Seminar	1		
8	August 4 th week	1 2	Fraunhoffer diffraction – Diffraction due to single slit-Fraunhoffer		Lecture + Experimental teaching	1 2		I MID Examinations	2		
9	September 1 st week	3 2	Fraunhofer diffraction pattern with N slits (diffraction grating). Resolving power of grating, Determination of wavelength of light in normal incidence using diffraction grating.		Lecture + Experimental teaching	3 2		Assignment	1		
10	September 2 nd week	3 2	Fresnel's half period zones-area of the half period zones-zone plate-comparison of zone plate with convex lens-difference between interference and diffraction.		Lecture + Experimental teaching	3 2					

11	September 3 rd week	3 2	UNIT-IV Polarization: Polarized light: methods of polarization by reflection, refraction, double refraction, Brewster's law-	BABINET's	Lecture + Experimental teaching	2 2		Group discussion/ Quiz	1		
12	September 4 th week	3 2	Mauls law-Nicol prism polarizer and analyser, Quarter wave plate, Half wave plate	Compensator And biquartz polarimeter	Lecture + Experimental teaching	3 2					
13	October 1 st week	3 2	optical activity, determination of specific rotation by Laurent's half shade Polarimeter. Idea of elliptical and circular polarization		Lecture + Experimental teaching	2 2		Student seminar	1		
14	October 2 nd week	3 2	UNIT-V Lasers and Holography: Lasers: introduction, spontaneous emission, stimulated emission. Population Inversion, Laser principle- Einstein Coefficients	Gabor hologram. Recording of hologram and	Lecture + Experimental teaching	2 2		Assignment	1		
15	October 3 rd week	3 2	Types of lasers-He-Ne laser, Ruby laser- Applications of lasers. Holography: Basic principle of holography-Gabor hologram and its limitations, Applications of holography.	Reconstructi on of image from hologram.	Lecture + Experimental teaching	2 2		Assignment	1		
16	October 4 th week	3 2	Revision		revision	1		II MID Examinations	2		

SIGNATURE OF THE LECTURER

SIGNATURE OF THE DEPARTMENT INCHARGE

SIGNATURE OF THE PRINCIPAL